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Transparency and long-ranged fluctuations: The case of glass ceramics
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Glass ceramics with nanosized crystallites shows an unexpected high transparency, which is not accounted
for by the Rayleigh theory of light scattering. Simple analytic arguments ascribe this large transparency to large
spatial correlations in the number distribution of the nanocrystallites. Introducing a two-dimensional lattice
model that mimics the nucleation and the coarsening phenomena leading to their formation, we show that the
extent of such correlations is determined by the spatially limited diffusion of the particles that form the

crystallites.
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I. INTRODUCTION

Glass ceramic are composite materials formed by a glass
matrix containing nanometer-sized crystals. Their structure
makes them valuable for application in photonics as they
combine the spectroscopic properties of crystals with the me-
chanical properties of glasses.'™ Nanoglass ceramics are
usually built via a thermal treatment of a multicomponent
glass.

A strong optical scattering, which is highly detrimental
for applications, would be expected for these systems due to
difference of the refractive index between the nanocrystals
and the amorphous matrix where they are embedded. Yet,
many glass ceramics exhibit a transparency that is orders of
magnitude higher than the predictions of Rayleigh theory,
which assume a collection of random scatterers with no spa-
tial correlation. This property of nanoglass ceramics has been
termed ultratransparency' % and seems to be related to large
spatial correlations, which would be responsible for the con-
structive interference of the scattered field, as it was first
suggested by Tick.? The spatial correlation (and the interfer-
ence) are described by the static structure factor S(g).6~'0
Different mechanisms have been proposed to explain such
spatial correlations. On one hand Hopper,? and then Hendy,?
have considered the effects due to a spinodal decomposition
which induces a homogeneity for length scale larger than
some spinodal distances. On the other hand, Shepilov’ has
studied the effects of the short range correlation induced by
the processes of nucleation and growth of the nanocrystals,
which prevents the formation of contacting particles as ex-
pected for a completely random distribution. In the work of
Edgar,!! the homogeneity is obtained at even shorter dis-
tance, considering that nucleation creates a core-shell struc-
ture where the average refractive index is conserved.

In a previous work, by computing the S(g) of a system of
equal particles created via random sequential addition
(RSA),!%12 which can be thought as a simple model system
of nanoglass ceramics, it has been shown that a correlation
between the nanocrystals certainly arises due to their finite
sizes and that this yields a significant increase in transpar-
ency although not enough to explain the ultratransparency
which is observed in experiments. The model was extended
in order to include a size distribution of the nanocrystals.'3
Thus it has been postulated that the crucial quantity in deter-
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mining the ultratransparency is the density fluctuation of
scatterers on larger scales than the wavelength of incident
light. The attenuation is proportional to this fluctuation that
can be much lower than that obtained from Poisson distribu-
tion for fully random distributed particles. Moreover, it was
suggested that the process of aggregation by thermal diffu-
sion produces low-density fluctuations at long range. As a
matter of fact, the growth of the crystallites proceeds by
coarsening even when practically the whole content of the
instable component is already precipitated in the crystalline
phase due to the coalescence of small crystallites into larger
ones. Thus, the particle density and its fluctuations (as well
as the average and the variance in the distribution of crystal-
lite sizes) will change during the thermal annealing. A crucial
role will then be played by the diffusion length, &, i.e., the
average distance covered by a particle during the annealing.
On general ground, one expects that a strong correlation in
the density fluctuations is introduced by the annealing pro-
cedure. In particular, over length scales R larger than ¢ the
fluctuations are smaller than those at shorter distances. As a
matter of fact, if the nanocrystallites grow mostly out of the
material collected in a basin of size &, the number of building
blocks and then of nanoparticles in a much larger volume
will have relative fluctuations similar to those of the parent
glass. Then, according to the above framework a decrease in
the intensity of the scattered light is due to the decrease of
the relative fluctuations in the number of scatterers at length
scales larger than &. In order to confirm such scenario, in the
present work we first discuss a simple argument to relate
ultratransparency and density fluctuations (Sec. II), then we
study a simplified bidimensional model of diffusing particles
(the building blocks of nanocrystallites) which have also a
certain probability to aggregate and form large clusters (the
nanocrystallites) (Sec. III).

II. THEORY

When the light is scattered by a macroscopic system of N
equal scattering centers of nanometric size (i.e., in the regime
d<<\, where d is the size of the particle and A is the wave-
length of the incident radiation), the total cross section o is
related to the structure factor S(g) of the system by the rela-
tion
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where dog,y/ ) is the differential cross section for the Ray-
leigh scattering of a single particle, ¢ is the exchanged mo-
mentum 2(27/N)n sin(0/2), n is the refraction index, and 6
the scattering angle.'* When \ is far larger than any charac-
teristic length scale within the system the contribute to the
cross section in Eq. (1) comes from the very low-¢ tail of
S(g). In absence of correlations among the particles, one
should expect that S(g ~0) ~ 1 and o~ Nog,, (Where oy,, is
the integrated cross section). It turns out to be useful to char-
acterize the structure factor in terms of the relative variance
A(R)=({N(R)?—(N(R))*)/{N(R)) of the number of scatter-
ers N(R) within a sphere of radius R. We note that
A(R— %) —0. Structure factor and A(R) are related by

sin gR dA(R)

S(q)—lzj0 dRq—R R (2)

The uncorrelated case corresponds to A(R)=1 (Poisson dis-
tribution) and S(g)=1. Within this approach, the effect of the
limited diffusion during the thermal annealing can be intro-
duced by making the rough approximation

1 R<¢
A(R) ~ { 3)
0 R>¢,
which is meant to describe the fact that for R < ¢ the diffu-
sion decorrelates totally the position of the particles. Within
this approximation we may approximate in the integral

dA(R)
= SR- 4
IR (R-¢) 4)
obtaining
sin g& )
S(q)=1-—"""—,_0(qé)6. (5)
qé
In this limit, the cross section in Eq. (1) becomes
2
UzN%(@) , (6)
3 A

which accounts for an increasing of the transparency of a few
decades when the ratio &/ is small enough. For realistic
systems the assumption in Eq. (3) is a very drastic one, since
the fluctuations of N(R) decay in a much smoother way for
R>¢&

III. NUMERICAL SIMULATION

In order to move beyond the drastic approximation of Eq.
(4), we introduce a simple lattice model of diffusion-limited
crystal growth,'® whose dynamical rule aims at mimicking
the formation of nanocrystallites out of a glass system. Fix-
ing the filling factor ¢, we place @M? building blocks on a
square grating (with lattice spacing d) of size M X M with
periodic boundary conditions (here we focus on the case ¢
=0.25). The starting configurations can be random or spa-
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FIG. 1. (Color online) The time evolution (starting from a ran-
dom distribution, A) according to the dynamics in Eq. (7). The
system at times r=1x10% (B), 1x10* (C), and 2X10° (D) is
shown.

tially periodic (square lattice). By calling 7" the number of

rth neighbors to the site i, a dynamics of the model is intro-
duced by choosing the probability p;; for a given block to
move from the site i to the site j at each time step. In our
case, we have

n,(']) c
py=\1-"¢"

(we take the parameters c=4, p,=1/2 and u=0.3). Roughly
speaking, the first multiplicative factor controls the rate of
evaporation of clusters. When ¢ > 1 small clusters evaporate
much faster than the largest ones. The second one, on the
other hand, simply tends to make such clusters more com-
pact and smooth. In Fig. 1 we show the time evolution of a
system with M =2048 up to 2 X 10° time steps. We show that
such evolution corresponds mostly to the formation of round
clusters of larger and larger size.

We will consider that this collection of scattering units
diffuse the light with an efficiency which is independent on
the actual configuration. In other words, each building block,
which will aggregate into particles, has a constant polariz-
ability and any induced effect is neglected. In this case the
intensity of the scattered electric field becomes proportional
to the static structure factor of the building blocks.

S expliar)

1

1+ u(ng-]) + 0.5n52))
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)

2

S(q) = : (8)

oM?

where the sum runs on the positions r; of the building blocks.

IV. RESULTS AND DISCUSSION

Figure 2 shows the time evolution of S(g) in the case of
(a) periodic and (b) random initial conditions. At =0, the
structure factor of the spatially periodic system shows only
Bragg peaks, while that of the random system is a constant at
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FIG. 2. (Color online) S(g) for the systems obtained by the
diffusion model starting from (a) a square lattice and (b) a random
configuration, at four representative times.

about 0.75 (consistently with ¢=0.25). After a few time
steps the S(g) of the two systems becomes equivalent in the
high g region, down to the first diffraction peak. Such peak
shifts with time to lower and lower ¢, as the mean size and
distance among particles increases. On the other hand, in the
small g region, the S(g) of the two samples is different for
short times and tends to become similar only at large enough
times. More quantitatively, the two curves were fitted by the
general low-g behavior, S(¢)=S,+b?g>. The results of the fit
are shown in Fig. 3. The parameter S, remains initially con-
stant respectively at values Sy=0 and Sy=0.75 for the crys-
talline and disordered initial systems and in both cases even-
tually saturates at a very small value (0 within the error bars).
Thus we are very close to the limit of Eq. (4). More impor-
tantly, the parameter b, which is related to the typical length
& [see Eq. (5)], in both cases increases proportionally to the
diffusion length
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FIG. 3. (Color online) Values of the parameters obtained by
fitting the low-¢ tail of S(g), at different times, by S(g)=a+b?q?* for
the two starting systems: square lattice (dots) and random (circles).
The solid lines in the upper graphs show the calculated diffusion
lengths.
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FIG. 4. (Color online) Particle to particle interference effects,
measured as the ratio between the actual scattered intensity, and that
in the absence of interference (see text), calculated at =50 000 for
square lattice (squares) and random (triangles) initial configura-
tions. The inset shows the two quantities, whose ratio is presented
in the figure: S(g) of the building blocks, i.e., the true scattered
intensity (squares) and that given by Eq. (8) (circles), for the crys-
talline initial condition.

Li= 57 Z 50 -r(O)F. ©)

We claim then that the length & which controls the number
fluctuations, coincide with the diffusion length L, which has
to be ascribed only to the dynamic process.

Summarizing, the transparency of the glass ceramics re-
mains that of the parent glass in the first steps of growth and
coarsening and begins to be reduced when &¢2, =(3n¢)?
becomes comparable with S,. Note that the (£/\)?> depen-
dence is consistent with the result of Eq. (6). Besides the
possible explanation of the observed ultratransparency in
glass ceramics, from the above analysis it turns out that the
diffusion length £ appears in the g* term of the S(g). This
suggest that £ can be inferred by the measure of the structure
factor in the very low-g range in light or small-angle x-ray
scattering (SAXS) experiments. We note that the structure
factor alone (Fig. 2) do not clarify to which extent the Ray-
leigh scattering intensity is reduced by interference effects
since the S(g) is obtained by adding all the contributions
from the single building blocks. Thus, in order to emphasize
the role played by interference, we define the quantity

>

F(g) ="

> exp(igr;) ’

1

N ; (10)

where the index j runs on the N clusters and the index i runs
on the building blocks of the jth cluster. F(g) is then propor-
tional to the scattered intensity in absence of any interference
of fields from different clusters. The F(q), S(g) and their
ratio are compared in Fig. 4 for =50 000. We see that, at
low g, F(gq)=const. Such comparison suggests that the inter-
ference among different clusters is negligible for ¢ higher
than g, weakly constructive at g~ ¢, and strongly
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FIG. 5. (Color online) Main panel: S(g) at small ¢’s for a modi-
fied RSA system (see text), with m; particles in each of 16 cubic
sub-boxes of size [, and m, X 16 particles, with m,=100—-m,, ran-
domly in the whole box. Circles: m;=0; inverted triangles: m;
=50; diamonds: m;=70; squares: m;=90; and triangles: m;=100.
The arrow indicates g=27/1. The stars, placed at g=0, are obtained
from the distribution of the number of particles in the 16 boxes, and
correspond to the quantity ¢2/100. Left, top: S(g) in a more ex-
tended range for the limiting cases m;=0 (circles) and m;=100
(triangles). S(g) is almost independent of m; for ¢ >21r/l. The solid
line shows S(g) calculated from the g(r) and is common to all m,
within the thickness of the line. Right, bottom: S(g) for the case
¢=0, m;=100 (triangles) and m;=50 (circles).

destructive in the low-g range. For light scattering, the
0<g<qmax= %Tn is the important range.

Finally, in order to confirm that at small ¢’s the structure
factor decreases as the particles become more correlated on
larger scales than £, we introduce a modified RSA model, '
where both £ and the number fluctuations on that length scale
are fixed a priori. As a matter of fact, in our modified RSA,
the box containing N equal spherical particles is divided in n
equal cubic sub-boxes of size [ (which now plays the role of
£), each containing on average m=N/n particles. While in
the original RSA model, the N particles are placed at random
in the box, the only constraint being that they cannot super-
impose, within our modified RSA model we sequentially
place m, particles in each of the n sub-boxes, and finally
my X n particles, with my=m—m;, randomly in the whole
box. The constraint that particles cannot superimpose is
maintained (with m;=0, m,=m standard RSA is recovered).
The relative variance of the number distribution for the sub-
boxes o?/m (see Fig. 5) decreases as m, increases and be-
comes zero for m;=m. Figure 5 shows the S(g) for m,=0,
50, 70, 90, 100, and m=100, at ¢=0.2. The box has 16 cubic
sub-boxes, of size 1, along a line with a volume V=L XX
(L=16X1, N=1600). We check that S(g) does not depend
on the shape by comparing with the cubic box case (4 X4
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X 4=64 sub-boxes, N=6400, m=100, and V=64 X [?). We
note that S(¢) depends on m; only in the very low-g range.
Figure 5 (top, left) shows S(g) in a more extended range for
the two extreme cases of m;=0 and m;=m. For high-g val-
ues, this calculation was done from the pair correlation func-
tion, g(r), a faster method which avoids the wide fluctuations
of the S(g) calculated by Eq. (1), but fails in reproducing the
low-q tail.

In order to disentangle the effects of the RSA, which,
simply avoiding particle superposition, in fact produces cor-
relations at any distance, from the effect of a defined long-
range density fluctuation, we have done the some calculation
on samples with ¢=0. In this case, the RSA constraints are
no more active and the particles can be placed at any small
distance. Again, a fraction of particles (m,/m) are equally
placed in the n sub-boxes and a part is placed randomly in
the whole volume. Figure 5 (right, bottom) shows the result
of the calculation for m;=50 and m;=100. When the density
fluctuations are decreased by increasing m,, a crossover from
S(g)=1 to a new low-¢ tail appears approximately at ¢
=2m/l. The curve has a low-g limit, S, given by S,
=m,/m=(1-m;)/m. In this case, unlike what we find for
¢=0.2, the (relative) density fluctuations remain the same
(0?/m=m,/m) at any distance higher than the size of the
sub-boxes. Weak oscillations with maxima at multiples of
q=21r/1 appear in S(g). The main result shown by Fig. 5 is
the presence of a crossover at ¢=2/[ from a nearly con-
stant behavior, S(¢)=S,+Aq? in the absence of the con-
straint, to a new parabolic curve, S(g)=S)+A’q% with
Sp<Sp and A’ >A.

V. CONCLUSIONS

We have shown that the existence of a characteristic
length ¢ over which density fluctuations are much smaller
with respect to the Poisson case may explain the phenom-
enon of ultratransparency in the visible domain for glass ce-
ramics, a class of materials of great interest for nanophoton-
ics. This length ¢ is related to the limited diffusion in the
growth process of the crystallites. Moreover the effects of
correlations over different length scales may be disentangled.
The high-g range depends on the microscopical arrangement
as particle structure and small range distance while the low ¢
range only on the long-range density fluctuations, related to
the diffusion length. Finally, the diffusion length & might be
inferred by means of light scattering or SAXS experiments,
in the low-g tail of S(g).
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